Foliar Nutrition

Developing an Effective and Efficient Foliar Nutrient Application Program

Why Foliar Nutrient Application

- Can be used to get nutrients into the plant when soil delivery is compromised by adverse conditions
- Offers efficient uptake of applied nutrients, so significantly lower quantities are needed
- Foliar applied nutrients are taken up rapidly so can be used to immediately address plant nutrient shortages, especially in leaves
- Is an effective way of getting micronutrients into plants
- A way to get soluble nutrients into plants without harming soil biology
- Low environmental impact leaching/run off

Nutrient Use Efficiency in the Agricultural Ecosystems

Nutrient	Efficiency (%)
Nitrogen	30–50
Phosphorus	15–20
Potassium	50–60
Sulphur	8–12
Zinc	2–5
Iron	1–2
Copper	1–2
Manganese	1–2
Boron	2–3
Molybdenum	2–5

https://www.mdpi.com/2077-0472/11/4/372

Nutrient Roles in the Plant

Nutrients	Strength and	Photo-	Protien	Strong	Reproductive	Fruit Fill
	Transport	synthesis	Synthesis	Growth	Support	& Quality
Potassium						
Calcium						
Magnesium						
Sodium						
Nitrogen						
Chloride						
Sulphur						
Phosphorous						
Silicon						
Iron						
Manganese						
Zinc						
Boron						
Copper						
Molybdenum						

Salt Index of Common Fertilizers

Fertilizer	Analysis	Salt index ^a	Relative salinity ^b
Sodium nitrate	16.5 N	100.0	100.0
Ammonium nitrate	35 N	104.7	49.4
Ammonium sulphate	21 N	69.0	53.7
Calcium nitrate	11.9 N, 17 Ca	52.5	30.1
Urea	46 N	75.4	26.7
Diammonium phosphate	21 N, 23 P	34.2	12.7
Monoammonium phosphate	12 N, 27 P	29.9	12.7
Superphosphate (single)	7.8 P	7.8	16.5
Superphosphate (triple)	19.6 P	10.1	8.5
Potassium chloride	49.8 K	116.3	38.5
Potassium nitrate	13 N, 38 K	73.6	23.6
Potassium sulphate	45 K	46.1	17.0
Calcium carbonate	40 Ca	4.7	1.9
Calcium sulphate	23 Ca	8.1	5.8
Magnesium sulphate	16 Mg	44.0	44.5

Limitations of Foliar Nutrient Application

- Have be applied more regularly, low rates, shorter lived
- Can't supply adequate quantities of macro nutrients
- Require the equipment to get them out
- Involve post germination traffic
- Some nutrients are needed in the soil for certain biological processes i.e. molybdenum, boron, cobalt, silica, sulphur, phosphorous, calcium...

Suitable Forms of Nutrients for Foliar Application

Soluble Fine or Solution grade fertilisers are recommended foliar sprays. These products dissolve readily so are less likely to block filters and nozzles

While micronized minerals can be used in foliar sprays, application can be problematic and their effectiveness as a nutritional supplement isn't guaranteed

Solubility

The following rules of thumb are useful for determining the solubility of fertilisers, although there may be exceptions.

- All ammonium, nitrate, potassium, sodium and chloride salts are soluble
- All oxides, hydroxides and carbonates are insoluble
- All sulfates are soluble except for calcium sulfate

Product	Formula		Ту	pical Ana	lysis		Solubility
		% N	% P	% K	% S	% Other	kg/100 L at 20⁰ C
Urea	CO(NH ₂) ₂	46					105
Ammonium Sulfate	(NH ₄) ₂ SO ₄	21			24		75
MAP	NH ₄ H ₂ PO ₄	12	26				37
MKP	KH ₂ PO ₄		22.5	28			23
Potassium Nitrate	KNO3	13		38.3			32
Potassium Sulfate	K ₂ SO ₄			41.5	16.5		11
Calcium Nitrate	5 Ca (NO ₃) ₂ . NH ₄ NO ₃ .10H ₂ O	15.5				19% Ca	250
Magnesium Sulfate	Mg SO ₄ .7H ₂ O				12.4	9.6% Mg	71
Solubor	Na ₂ B ₈ O ₁₃ .4H ₂ O					20.5% B	9.5
Copper Sulfate	CuSO4.5H2O						32
Iron Sulfate	FeSO ₄ .7H ₂ O				11.2	19.7% Fe	48
Manganese Sulfate	MnSO ₄ .H ₂ O				19	31% Mn	70
Sodium Molydbate	Na ₂ MoO ₄ .2H ₂ O					39% Mo	65
Zinc Sulfate	ZnSO4.7H2O				11	22.7	96

Product Formulae, Analyses and Solubility

Liquid Nutrient Compatibility Rules

Products such as urea, ammonium nitrate, potassium chloride (Muriate of Potash) and potassium nitrate are compatible in solution with one another, and most other fertilisers.

Phosphorus, sulphur, calcium, magnesium and trace element fertilisers are not as widely compatible and may react with other products in solution.

Examples of products that should not be sprayed together, as insoluble precipitate may form and settle to the bottom of the tank, are:

- Ammonium Sulphate Do not mix with calcium salts, e.g. calcium nitrate and calcium chloride.
- Phosphorus fertilisers (MAP and MKP) Do not mix either product with calcium or magnesium salts, or metallic sulphates, e.g. zinc sulphate.
- Potassium Sulphate Do not mix with calcium salts.
- Calcium Nitrate & Calcium Chloride Do not mix with ammonium sulphate, MAP, MKP, potassium sulphate, magnesium sulphate, metallic sulphates, boron fertilisers, or sodium and ammonium molybdate.
- Magnesium Sulphate Do not mix with MAP, MKP, calcium salts or boron fertilisers.
- Boron Fertilisers, e.g. Solubor (sodium borate) and Borax Do not mix with calcium salts, magnesium salts or metallic sulphates.
- Metallic Sulphates Zinc/Iron/Manganese/Copper Sulphate Do not mix with MAP, MKP, calcium salts, boron fertilisers, sodium or ammonium molybdate.

Fertilisers in Solution - Compatibility Chart

citec Pivot Fertilisers							inc	citecpivo	otfertilis	ers.com	au
Compatibility chart f	for com	monly u	used fer	rtilisers	in solu	tion					
Ingredient	Urea	Ammonium Sulfate	MAP & MKP	Potassium Nitrate	Potassium Sulfate	Calcium Nitrate &Calcium Chloride	Magnesium Sulfate	Solubor	Metallic Sulfates	Metallic Chelates	Ammonium & Sodium Molybdate
Urea	000	~	~	~	~	~	~	~	~	~	~
Ammonium Sulfate	~	000	~	Р	~	Х	~	~	~	~	~
MAP & MKP	~	~	000	~	~	Х	Х	~	Х	~	~
Potassium Nitrate	~	Р	~	000	~	~	Р	~	~	~	~
Potassium Sulfate	~	~	~	~	000	Х	~	~	~	~	~
Calcium Nitrate & Calcium Chloride	~	х	х	~	х	000	х	х	х	~	х
Magnesium Sulfate	~	~	Х	Р	~	Х	000	Х	~	~	~
Solubor	~	~	~	~	~	Х	Х	000	Х	~	~
Metallic Sulfates (Cu, Fe, Mn, Zn)	~	~	х	~	~	х	~	х	000	NR	х
Metallic Chelates, e.g. Iron, Zinc	~	~	~	~	~	~	~	~	NR	000	~
Ammonium & Sodium Molybdate	~	~	~	~	~	х	~	~	х	~	000

✓ Compatible X Incompatible P Precipitate may form in concentrated solutions

Application Rates and Spray Concentrations

Products	Rate	Typical	Spray Volum	e (L/ha) &	Comments
		Spray Co	oncentration	(kg/100 L)	
	kg/ha per	Grain & Field Crops	Vegetables 500 L/ha	Trees, Vines, Flowers	
	spray	50 L/ha		1,500 L/ha	
Urea	10	10 - 20	1 - 2	0.5	Up to 30 kg/ha (20 – 30% solution at 100 L/ha) can be used in winter cereals at mid- tillering. Use low biuret urea in sensitive horticultural crops where applied regularly or at high rates.
МАР МКР	2.5 - 5	-	0.5 – 1.5	0.25 – 0.5	Phosphorus is less commonly applied in foliar sprays than nitrogen and potassium. It is not readily leached from the soil, and is important in the early stages of plant growth. Hence, in annual crops, the complete crop requirement is normally applied as a basal soil dressing at planting.
Potassium Nitrate	5 - 10	Cotton: Ground 5%; Air 10 – 20%	0.5 - 2	0.5 - 1	Up to 20 kg/ha of potassium nitrate may be used in a single spray in tolerant tree and field crops, e.g. cotton. Potassium sulfate may be used, but it is less soluble, and is therefore not generally recommended. It is used through high volume spray equipment in pineapples. Potassium nitrate is recommended in low volume sprays.
Calcium Nitrate	5	-	0.8	0.5	Regular, e.g. weekly, sprays are required during the fruit filling period as calcium is immobile in plants.
Magnesium Sulfate	2 - 5	2 - 5	0.25 - 1	0.25 - 0.5	Some authorities recommend 1 % (1 kg/100 L) sprays in horticultural crops. Fortnightly sprays are often required during critical growth stages.

Winning Combinations

Nutrients can be mixed with organic formulations to improve nutrient availability, stability, bio-suitability, uptake, energy status & metabolism

Chelation

Organic Chelating/Complexing Agents, Biostimulants & Inoculants

Fulvic Acid Citric Acid Amino Acids **Fish Hydrolysate** Liquid Seaweed **Molasses Bioferments** Vermicast Extracts Compost Teas Potassium Silicate

Liquid Trace Element Mix

Amount	Product	% Nutrient in Product	Final Shuttle Percentage
50kg	Manganese Sulphate	31.50%	1.58%
50kg	Iron Sulphate	20%	1.00%
40kg	Zinc Sulphate	23%	0.92%
25kg	Copper Sulphate	25%	0.62%
30kg	Boric Acid	17%	0.51%
2.5kg	Cobalt Sulphate	21%	0.05%

1) Mix 20kg Fulvic Acid and 15kg Citric Acid with 800L water in a shuttle.

2) Add the above nutrients, one at a time to the 1000L shuttle and mix until dissolved.

3) If required, you can also add up to 1kg of Nickel Sulphate to this mix.

4) Top up with water, then close and store out of direct sunlight.

Ingredients may settle a little over time so give the barrel a good stir before use.

Application Rate: Foliar Application - 10-20L/Ha as needed

Other optional inputs that can be added to the diluted spray tank mix prior to application include:

10-15kg/Ha Urea

5-7.5kg/Ha Potassium Sulphate

5-7.5kg/Ha Magnesium Sulphate or 2.5-5 kg/Ha MAP (not compatible with one another)

2-4/Ha Fish Hydrolysate

2-4L/Ha Molasses

2-4L/Ha Fermented Seaweed (Acidic)

25-50g/Ha Sodium Molybdate

Note: this mix can be applied at higher rates to the soil, but the uptake of soil applied trace elements is generally much poorer.

Efficient Protein Synthesis

- It takes lots of energy to convert nitrate to ammonia to amino acids and proteins, there must be an adequate supply of carbohydrates to fuel these reactions
- Certain nutrient co-factors are needed to make the enzymes involved in these conversion processes i.e.
 Sulphur and Molybdenum are part of the nitrate reductase enzyme, Nickel is part of the Urease enzyme
- Other nutrients besides nitrates are needed to assemble the full spectrum of necessary protiens i.e.
 Sulphur to form Methionine & Cysteine

Urease Enzyme

<u>Liquid Nitrogen Mix – 1000L</u>

Add the following ingredients one at a time to 800L water in a 1000L shuttle and thoroughly mix until dissolved in solution. Top up the barrel with water, mix again, close and store in a cool, shaded environment:

- □ Fulvic acid powder 25kg
- 🗌 Urea 500kg
- 25kg Sulphur (i.e. 100kg Ammonium Sulphate/150kg Sulphate of Potash/200kg Magnesium Sulphate)
- □ Sodium Molybdate 2.5kg
- □ 1kg Nickel Sulphate

Ingredients may settle over time so give the barrel a good stir before use. The following products are compatible with and can be combined with this mix before application, at the following recommended rates:

5kg/Ha MAP/MKP 500g/Ha Solubor 20L/Ha Liquid Chelated Sulphate Trace Elements 2L/Ha Molasses Fish Hydrolysate - 2.5L/Ha Fermented (Acidic) Kelp - 2L/Ha

<u>Application</u> Foliar application - 20L/Ha Soil application – 50L/Ha

Preferably apply in mild conditions during the early part of the day before it warms up, or towards dusk when it starts to cool down.

Alkaline Foliar Formulations

The following alkaline soluble ingredients are compatible with one another and can be combined in water to make customised spray mixes.

- 1.5L/Ha Potassium Silicate
- 500g/Ha Soluble Seaweed Powder
- 10kg/Ha Urea
- 500g/Ha Solubor
- 50g/Ha Sodium Molybdate
- 500g/Ha Soluble Potassium Humate
- 2L/Ha Molasses
- 100g Concentrated Sea Minerals or 1L Seawater

Add appropriate amounts of chosen ingredients, one at a time, to a container with enough water to dissolve, and mix thoroughly until suspended in solution. Before application, stir the mix, let it come to rest, then decant, leaving behind/filtering out any solids that settle on the bottom

It's recommended to apply with no less than 750L/Ha water to avoid excessive concentrations of certain ingredients, that can cause leaf burn.

Micronized Lime, Dolomite, Gypsum, Silica, and Rock Phosphate/Guano products can also be put out with this mix at recommended rates but they don't remain in suspension, so require some agitation during application, and must be fine enough to not block nozzles/drippers.

To introduce a biological component, add the extract of 2kg/Ha compost/vermicast to the tank mix. Once the compost/vermicast extract has been added it must be put out within a couple of hours.

Preferably apply in mild conditions during the early part of the day before it warms up, or towards dusk when it starts to cool down.

Plant Leaf Testing

Leaf Tissue Tissue and/or Plant Sap Analysis are the diagnostic methods commonly used to determine foliar nutrition requirements

NUTRIENT ELEMENT BALANCE CHART

		Result	Deficiency	Marginal	Normal	Above Normal	Excess	Targe	et
Nitrogen	3.38	%						2.75-5.00	%
Nitrate - N	<30	mg/kg						#	mg/kg
Sulfur S	6 <mark>0.37</mark>	%						0.25-0.45	%
Phosphorus I	0.21	%						0.28-0.45	%
Potassium H	< <u>1.13</u>	%						3.20-4.50	%
Magnesium Mg	g <mark>0.26</mark>	%						0.20-0.35	%
Calcium Ca	a <mark>0.340</mark>	%						0.250-0.500	%
Sodium Na	a <mark>0.54</mark>	%						0.20-0.50	%
Chloride	0.60	%						2.5-2.8	%
Iron Fe	e <mark>86</mark>	mg/kg						25-100	mg/kg
Aluminium A	I 14	mg/kg						#	mg/kg
Manganese Mr	n <mark>4</mark> 4	mg/kg						60-150	mg/kg
Boron E	8 8.2	mg/kg						8.0-15	mg/kg
Copper Cu	J 5.1	mg/kg						8.0-12	mg/kg
Zinc Zr	n <mark>21</mark>	mg/kg						25-60	mg/kg
Cobalt Co	< 0.16	5 mg/kg						#	mg/kg
Molybdenum Mo	<mark>2.9</mark>	mg/kg						0.30-0.40	mg/kg

Differential Leaf Sap Analysis

Mineral		Current Level	Optimum	
Total Sugars	%	1,5	2,1 - 2,9	1
	%	2,1		2
рН		3,5	3,2 - 3,7	1
		3,3	- *	2
FC	m\$/cm	6.4	65-83	1
	mS/cm	5.8	0,5 0,5	2
K Deteccium	.,.	1049	1475 2275	1
K - Potassium	ppm	1948	14/5 - 22/5	2
	ppin	1355		
Ca - Calcium	ppm	238	295 - 1180	1
	ppm	409		-
К / Са		8,20		1
		3,32		2
Mg - Magnesium	ppm	402	510 - 830	1
	ppm	682		2
Na - Sodium	ppm	80	18 - 92	1
	ppm	110		2
NH4 - Ammonium	nnm	197	70 - 170	1
Annonium	ppm	112	/0 1/0	2
NO2 Nitrata			20 50	1
NO3 - Nitrate	ppm	<20	30 - 50	2
	phin	<20		
N in Nitrate	ppm	<5	7 - 11	1
	ppm	<5		2
N - Total Nitrogen	ppm	742	460 - 720	1
	ppm	849		2
Cl - Chloride	ppm	204	110 - 330	1
	ppm	283		2
S - Sulfur	nnm	31/	130 - 430	1
5 - Sullul	nnm	436	130 - 430	2
	ppin	430		
P - Phosphorus	ppm	319	340 - 590	1 2
	ppm	225		
Si - Silica	ppm	9,2	90,0 - 146,2	1
	ppm	21,0		2
Fe - Iron	ppm	1,77	7,40 - 22,80	1
	ppm	7,07		2
Mn - Manganese	ppm	5,57	10,90 - 29,90	1
	ppm	11,33	.,	2
Zn - Zinc	nnm	5 91	4 55 - 15 15	1
211 - 21110	ppin	9.57	4,55 - 15,15	2
	6600	5,57		1
B - Boron	ppm	1,88	2,80 - 12,30	2
	ppm	4,01		_
Cu - Copper	ppm	0,31	0,45 - 3,15	1
	ppm	0,35		2
Mo - Molybdenum	ppm	<0,05	0,05 - 0,25	1
	ppm	0,06		2
Al - Aluminium	nnm	4 05		1
	nom	3.16		2
	6611	5,10		

Consult your advisor for appropriate fertilizer recommendations.

Nutrient Mobility in Plants

Nutrient mobility in plants

Very mobile – Nitrogen, Phosphorus, Potassium, Magnesium [sep] (Deficiency symptoms often appear first in older leaves and quickly spread throughout the plant)

Moderately mobile – Sulfur, Copper, Iron, Manganese, Molybdenum, Zinc<u>sep</u> (Deficiency symptoms first appear in new growth but do not readily translocate to old growth)

Immobile – Boron, Calcium (Calcium is very immobile)

Growth and Mineral Nutrition of Field Crops, Third Edition. By Nand Kumar Fageria, Virupax C. Baligar, Charles Allan Jones, 2011. CRC Press, Taylor and Francis Group.

. © NovaCrop Control

Nutrient deficiency based on the position in the plant:

Field Diagnostic Tools

Water Quality

Factors such as conductivity, pH, hardness and suspended solids affect the suitability of water for use in foliar sprays.

EC

If the water has high conductivity, i.e. it is high in soluble salts such as sodium and chloride, spraying it on the foliage may affect plant growth. Adding fertiliser to the water will add to the concentration of salts, and increase the likelihood and severity of foliar burn. For regular applications it is best to keep the EC below 3800ppm.

рΗ

- The ideal pH range for most foliar sprays is between 5 and 6.5
- Water that is too acid or too alkaline may harm the foliage
- If the water is alkaline or hard (>70ppm), precipitates, e.g. of calcium sulfate; calcium borate; calcium molybdate; and calcium, magnesium or metallic carbonates or hydroxides; may form, reducing nutrient uptake by leaves and the effectiveness of the spray
- The addition of fertilisers can change the pH
- Can adjust the pH with acidifying (i.e. citric acid) or alkalising (i.e. sodium carbonate) agents

Tank Mixing Order

- 1. Clean Water
- 2. Pesticides
- 3. Fertilisers
- 4. Biostimulants
- 5. Biology
- 6. Surfactants

Application

Foliar sprays are best applied:

- early in the morning or later in the afternoon
- in dry conditions
- when it's not too windy
- with equipment that enables you to get good leaf coverage, on both the underside and tops of the leaves
- regularly enough to maintain nutrient levels

Whole Season Approach

Questions ?

Point of Deliquescence ?

Adding a small amount of material with a high point of deliquescence helps the spray liquid stay moist on the leaves for longer.

These include:

- Magnesium chloride
- Potassium nitrate
- Calcium nitrate/chloride
- Sea minerals